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Abstract

In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen
& Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear
stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries,
and the corresponding development of the discrete analogue of nonlinear stable high order
schemes, including boundary schemes, were developed, extended and evaluated for various fluid
flows. High order here refers to spatial schemes that are essentially fourth-order or higher away
from shock and shear regions. The objective of this paper is to give an overview of the progress
of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b,
2000). This class of schemes consists of simple non-dissipative high order compact or non-
compact central spatial differencings and adaptive nonlinear numerical dissipation operators
to minimize the use of numerical dissipation. The amount of numerical dissipation is further
minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives,
and by rewriting the viscous terms to minimize odd-even decoupling before the application of
the central scheme (Sandham & Yee).

The efficiency and accuracy of these schemes are compared with spectral, TVD and fifth-
order WENOQ schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal
multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate
amount of numerical dissipation to be added to the non-dissipative high order spatial scheme
at each grid point will be discussed. Numerical experiments of long time integration of smooth
flows. shock-turbulence interactions, direct numerical simulations of a 3-D compressible tur-
bulent plane channel flow, and various mixing layer problems indicate that these schemes are
especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dy-
namics, direct numerical simulation or large eddy simulation of compressible turbulent flows
at various speeds including high-speed shock-turbulence interactions, and general long time
wave propagation problems. These schemes, including entropy splitting, have also been ex-
tended to freestream preserving schemes on curvilinear moving grids for a thermally perfect
gas (Vinokur & Yee 2000).

I. Motivation and Overview

Strong theoretically based high order high-resolution shock-capturing schemes have domi-
nated algorithm development for fluid flows for nearly two decades. During the 1990’s, the
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focus was on increasing the order of accuracy for the interior grid points of the computa-
tional domain with stable numerical boundary conditions generally not included as part of the
theoretical development. Multidimensional upwinding and high order unstructured or finite
element constructions have flooded the computational fluid dynamics (CFD) literature. The
majority of these schemes are either too CPU intensive for practical applications or they are
still in the development stage. In spite of their high-resolution capability for rapidly evolving
flows and short time integrations, these schemes often exhibit undesirable amplitude errors
for long time integrations. On the other hand, simplicity, efficiency and highly parallelizable
robust algorithms are the major requirements in industrial, geophysical, space exploration and
military practical CFD applications. The objective of this paper is to give an overview of the
progress of a class of simple. highly parallelizable high order shock-capturing schemes that
meets many of the requirements for practical computations, especially for long time integra-
tions of unsteady flows. For ease of reference, “schemes” or more precisely “interior schemes”
here generally refer to spatial difference schemes for the interior grid points of the computa-
tional domain, whereas “boundary schemes” are the numerical boundary difference operators
for grid points near the boundaries. However, without loss of generality, we also adopt the
conventional terminology of denoting “scheme” as either the “combined interior and boundary
schemes” or just the “interior scheme” interchangeably within the context of the discussion.

Before 1994. rigorous stability estimates for accurate and appropriate boundary schemes as-
sociated with fourth-order or higher spatial interior schemes were the major stumbling block in
the theoretical development of combined interior and boundary schemes for nonlinear systems
of conservation laws. Spatial nonlinear stability of initial boundary value problems (IBVPs)
goes hand-in-hand with the appropriate amount of nonlinear numerical dissipation required to
stabilize the combined interior and boundary schemes. The delicate balance of the numerical
dissipation for stability without the expense of excessive smearing of the flow physics after long
time integrations poses a severe challenge for unsteady flow simulations of this type. Actually,
there are two possible sources of stabilizing mechanisms; namely. (a) from the governing equa-
tion level and (b) from the numerical scheme level. Employing a nonlinear stable form of the
governing equations {more conditioned form of the PDE) in conjunction with the appropriate
nonlinear stable scheme for IBVPs is one way of minimizing the use of numerical dissipation.

The major tool used to overcome the stumbling block is a generalized energy method. The
basic building block in establishing a stable energy estimate for high order spatial central
schemes for nonlinear hyperbolic conservation laws relies on the aforementioned mechanisms
(a) and (b). From the governing equation level, a special transformation of the conservation
laws to an appropriate form for the application of the continuous energy estimate for a stable
IBVP of the governing equations is needed. From the numerical scheme level, a compatible
boundary scheme for high order central interior schemes that satisfy the discrete analogue of
the contimuous energy estimate is needed. See Strand (1994), Olsson (1995). Olsson & Oliger
{1994) and references cited.

Olsson proved that an energy estimate can be established for second-order central schemes.
To obtain a rigorous energy estimate for high order central schemes. one must apply the
scheme to the split form of the inviscid governing equation. For the Euler equations, the
transformation consists of a convex entropy function that satisfies a mathematical entropy
condition. This mathematical entropy function, in this case, can be a function of the physical
entropy. Therefore, the resulting splitting is hereafter referred to as entropy splitting for ease
of reference. Here, the entropy splitting should not be confused with the traditional flux vector
splittings such as the Steger and Warming splitting (1981) or other variants. The traditional
flux vector splitting splits the flux function into different parts and most often into upwind
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and downwind portions. However, the entropy splitting splits the flux derivatives and the
time derivative of the conservative dependent variables using the properties of the chosen
mathematical entropy function and the symmetrizability of the conservation laws, without
reference to any upwinding. For the viscous terms, only symmetry is needed in the derivation
of the energy estimate. These developments have made high order non-dissipative spatial
central schemes of renewed interest to CFD practitioners where simplicity, efficiency and high
parallelizability are their trademark.

The recently developed high order low-dissipation shock capturing schemes using character-
istic filters of Yee et al. (1999a) fit in the entropy splitting framework. Instead of applying a
scalar dissipation or filter (Gerritsen & Olsson), they supply nonlinear filters based on, locally,
the different wave characteristics of the inviscid flux. For complex shock waves, shear and
turbulence interactions, one has better control of the amount of dissipation associated with
each wave. For efficiency, Yee et al. proposed a combination of a high order base scheme and
a nonlinear filter operator. The base scheme consists of narrow grid stencil high order compact
or non-compact centered non-dissipative classical spatial differencings. The filter consists of a
product of the dissipative portion of a low order total variation diminishing (TVD), essen-
tially non-oscillatory (ENO) or weighted ENO (WENO) scheme and an artificial compression
method (ACM) sensor. In contrast to hybrid schemes that switch between spectral or spectral-
like non-shock-capturing schemes and high order ENO schemes, the high order non-dissipative
base scheme is alwayvs activated. The role of the ACM sensor is to reduce the amount of nu-
merical dissipation away from shock and shear regions. As an alternative to the ACM sensor,
Sjogreen and Yee (2000) utilized non-orthogonal wavelet basis functions as multi-resolution
sensors to dvnamically determine the amount of nonlinear numerical dissipation to be added
at each grid point. The resulting sensor function is also readily usable for grid adaptation
purposes. The final grid stencil of these schemes is five points in each spatial direction if
second-order TVD schemes are used as filters, and seven points if second-order ENO schemes
are used as filters for a fourth-order base scheme. Studies showed that higher accuracy was
achieved with less CPU time and fewer grid points when compared with that of standard high
order TVD. positive. ENO or WENO schemes. Table 1 shows the flow chart of the schemes.

The studies in Yee et al. {1999b, 2000) and Sandham & Yee indicate that entropy splitting
can improve the overall stability of the scheme, and that the amount of numerical dissipation,
if needed. is less than for the unsplit approach. They view entropy splitting as a conditioned
form of the original governing equations. Here, “condition the governing equation” is different
from “preconditioning of the flow equations or their discretized counterparts” in convergence
acceleration of time-marching to steady states. Their studies also indicate that entropy splitting
alone can improve nonlinear stability even when one employs boundary schemes that do not
satisfy the discrete generalized energy estimate. This stability property of the entropy splitting
is valuable not just for the class of schemes in question, but can also be applied to other schemes
commonly used in practical CFD applications. This emphasizes the fact that one should always
try to apply numerical schemes to a more conditioned form of the governing equations.

Extension of these schemes to freestream preserving schemes for 3-D curvilinear moving grids
for a thermally perfect gas is reported in Vinokur and Yee (2000). The main difficulty in the
extension of high order schemes to curvilinear grids is the high order numerical evaluation of the
geometric terms, arising from the coordinate transformation, to satisfy a coordinate-invariant
freestream preservation condition. The question of the extendibility of the entropy splitting
concept to other physical equations of state and evolutionary equation sets was examined
in Yee et al. (1999b. 2000). Their study shows that the entropy splitting can be formally
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extended to a thermally perfect gas, with the internal energy being an arbitrary function
of temperature. For non-equilibrium flows which consist of a mixture of different species,
each obeying a thermally perfect gas law, extension of the splitting is problematic. While
they were able to prove the symmetry and homogeneity properties required for the energy
estimate, the degree of homogeneity can only be obtained by solving a system of nonlinear
equations. In addition, to obtain the Jacobian of the transformation required inverting a
non-sparse linear system. It would therefore be difficult to establish the positive definite
condition in closed form. Consequently, the extension of the method to non-equilibrium flows
is not practically feasible. If the homogeneity condition is not required, then one can use
symmetry variables based on the physical entropy, as was shown by Chalot et al. (1990). In
this case, the resulting PDEs are in pure non-conservative form and entropy splitting is no
longer applicable. For magnetohydrodynamics (MHD), the magnetic field has to be added
as a “conservative” variable. But the square of the magnetic field is one of the terms in the
definition of the total energy. Thus, from dimensional arguments it is clear that one cannot
obtain the homogeneity condition. A similar situation exists for the artificial compressibility
method of treating incompressible flow. In the Maxwell equations, we have a linear system
of hyperbolic equations that can easily be symmetrized. Thus Strand’s numerical boundary
operators are still valid, but entropy splitting is not needed. For non-equilibrium flows, if one
solves the species and flow equations separately in a loosely-coupled manner, then the flow
equations effectively satisfy a locally thermally perfect gas law and a “local” form of entropy
splitting is applicable.

We would like to point out that although the formal extension of entropy splitting is lim-
ited to a thermally perfect gas, the numerical schemes themselves do not have this restric-
tion. Consequently. the schemes discussed here are applicable to equilibrium real gas, non-
equilibrium and the artificial compressibility method of treating incompressible flows, MHD
and the Maxwell equations.

II. Entropy Splitting and Numerical Methods

This section reviews the entropy splitting formula for the 2-D compressible Euler equations
for a perfect gas in Cartesian coordinates. Formulas for the corresponding 3-D case can be
found in Appendix B of Yee et al. (1999b) and for curvilinear moving grids for a thermally
perfect gas in Vinokur and Yee (2000). The mathematical theory is quite involved. Interested
readers are referred to references cited. The Yee et al. (1999a) and Sjogreen & Yee numerical
methods used in conjunction with the entropy splitting are also summarized.

2.1. Summary of Entropy Splitting for a Perfect Gas

In vector notation the 2-D compressible time-dependent Euler equations in conservation
form for an equilibrium real zas can be written, in Cartesian coordinates, as

U+ F.+ Gy =0, (la)
where U, = & F, = 2F and G, = 29 and the U, F, G, are vectors given by
at or y Ay
P ém pY
- |puy. _lput+pi. _ puv
U= o | F= o | G = ot 4p | (1b)

e eu + pu ev + pv



The dependent variable U is the vector of conservative variables, and (p, u, v, p)T is the vector
of primitive variables. Here p is the density, u and v are the velocity components, pu and
pv are the z- and y-components of the momentum per unit volume, p is the pressure, e =
ple + (u? + v?)/2] is the total energy per unit volume, and ¢ is the specific internal energy. For
a thermally perfect gas, the equation of state is p = pRT, where R is the specific gas constant,
and T is the temperature with ¢ = ¢(T). For constant specific heats (calorically perfect gas)

£ = ¢, T, where ¢, is the specific heat at constant volume.

The eigenvalues associated with the flux Jacobian matrices of F and G are (u,u,u = c)
and (v,v,v % c), where c is the sound speed. The two u,u and v, v characteristics are linearly
degenerate. Hereafter. we refer to the fields associated with the u + ¢ and v + ¢ characteristics
as the nonlinear fields and the fields associated with the u,u and v, v characteristics as the
linear fields.

The entropy splitting for the compressible Euler equations for a perfect gas utilizes the
result of Harten (1983) on symmetric form for systems of conservation laws as the backbone.
The idea is to introduce a symmetry transformation from the vector of conservative variables
U to a new vector W, referred to as the “entropy variables”. The transformation is chosen
so that Fy = %{,—. and Gy = %% are symmetric, and Uy = aaT({' is symmetric and positive
definite. One then restricts the transformations to those that allow a special splitting of F;, G,
and U,. This requires that the entropy variable W be chosen such that F(U(W})), G(U(W))
and U (W) are homogeneous functions of W of degree 3. Then the splitting of F; results in

1 . 1 3 1
F.=——(FyW) + —FWwW, = F, FuW,, -1 2
3+1( W+ 5 F 1 +5+1 wW,, B# (2)
The corresponding 13" can be written as
. " T, . -\ T
. =%£e—2p€—P(l+ﬂ) —pu —pv pl'; pT=—(pp77) 7. 3)

A similar splitting can be written for G, and U;. The forms for Fyy and Gy can be found in
Yee et al. (1999b). Under the above conditions one can rigorously establish a bound on the
rate of growth of the energy norm in terms of the eigenvalues corresponding to the incoming
characteristic variables at the boundary of the domain.

Normally. we need to compute Uy for the split form of U, = B%Ut + #Uw W;. However,
we only consider a semi-discrete approach of applying temporal discretizations. Aside from
using the split form of the inviscid flux derivatives F; and G,. we do not have to use the
split form of L7, for implementation. Thus the final form of the semi-discrete entropy splitting
approach still can be expressed in terms of conservative and primitive variables, making possible
easy and efficient implementation in existing computer codes. The splitting parameter 3 has
to satisfy 3 > 0 or 3 < 1—_"_&7 Harten only considered 3 < ﬁ This choice of 3 appears to be
“non-standard” or “nonphysical” in the sense that more than 100% of the conservative portion
and a negative non-conservative portion is used. Although Gerritsen and Olsson considered
the 3 > 0 range which Harten overlooked, they set 3 = 1 in conjunction with high order
central differencing schemes in all of their numerical examples. This choice of 3 corresponds to
splitting of the flux derivative into equal conservative and non-conservative proportions. Yee
et al. (1999b. 2000) recommend the use of 3 > 0. The degree of improvement in stability over
the unsplit approach depends on the choice of 3. For 3 > 100 the benefit from the entropy
splitting is diminishing, since this case is close to the unsplit situation. In addition, the choice
of /3 is also problem-dependent. For certain problems, e.g., complex shock-shear interactions,
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the beneficial range of 3 can be small. A combination of wavelets as filter (Sjogreen & Yee)
sensors and grid adaptations (Gerritsen & Olsson) might be able to enlarge the beneficial
range since the resulting wavelet sensor function is also readily applicable for grid adaptation
purposes. The grid adaptation might be able to minimize the underresolved grid related
spurious oscillation producing instability. This will be a subject of future research.

2.3. Numerical Methods

The spatial discretizations considered in Yee et al. (1999a) consist of two parts, namely,
a base scheme and a filter. When numerical dissipations or filters are not used, the scheme
consists of only the base scheme. If entropy splitting is used, the base scheme is applied to the
split form of the inviscid flux derivatives. Possible non-dissipative high order base schemes for
F, and G, and the viscous terms (if present) are the standard fourth and sixth-order compact
and non-compact central schemes for the interior grid points.

There are many possible candidates for the filter operator in conjunction with high order
base schemes. For efficiency and ease of numerical boundary treatment, Yee et al. (1999a)
proposed using filter operators whose grid stencils have a width similar to that of the base
scheme. The filter operator consists of the product of a sensor and a nonlinear dissipation. See
Table 1 for the road map. Denote F} x as the discrete approximation of the inviscid flux F at
(jAz, kAy). where Ar and Ay are the grid spacings in the z- and y-directions and j and k
are the corresponding spatial indices. Let the filter vector in the z-direction be of the form

~* 1 *
Fj+§k:§R1+§@j+§' (4)
ﬁ;—;-,l.k is the modified form of the nonlinear dissipation portion of the standard numerical

flux. For characteristic based methods. the quantity R;, 1 (with the & index suppressed) is the

right eigenvector matrix of % using Roe’s average state (Roe’s approximate Riemann solver).

We define G; g+ In the same manner. The elements of (I>J‘Jrl (with the k index suppressed),
' 2

denoted by (&' ,)*. are

J+3
d)§+i in (5) is the dissipative portion of the high resolution scheme resulting from using a TVD,
MUSCL with slope limiters. ENO or WENO scheme. Formulae for ¢§+L are well known and

can be found in the literature. See Yee et al. (1999a) for details and for a discussion of other
possible filters.

Here Sj+l is the sensor and is a mechanism for controlling excess numerical dissipation that

is inherent in the dissipative portion of standard high-resolution shock-capturing schemes. Two
possible sensors are considered. They are the ACM sensor and the wavelet sensor (Sjogreen &
Yee).

ACM Sensor: For the ACM filter, SJl, = fe@i. e The parameter x is problem-dependent.
For smooth flows that are absent of high shears. k can be very small. It is used to minimize
spurious high frequency oscillation producing nonlinear instability associated with pure central
schemes, especially for long time integration problems. Different physical problems require
different values of x because of the large variation in flow properties. The « value may vary
from one characteristic wave to another, and from one region of the flow field to another region



with different flow structure. The function Hj 4 is the Harten ACM gradient sensor but utilized

in a different context than Harten originally intended. For a general 2m + 1 point base scheme,
Harten recommended

9;+% = max (@j—mH’"'v@Hm)‘ (6)
o Iaﬁ_ﬂ o 1]

: (7)
’ o i+ |+ ]a - %‘
Here the parameter p is an exponent > 1 and is not the “pressure p” in (1). Instead of varying
 for the particular flow problem, one can vary p. For larger p, less numerical dissipation is
added. Note that by varying p > 1 in ( 7) one can essentially increase the order of accuracy of

the filter. The aJ ; are elements of R l(U +1.k —Uj k). The corresponding a 1 qbe_l and
R; j+4 using the \IL SCL formulation a.re instead functlons of the left and right states of U.

Multi-Resolution Non-orthogonal Wavelet Sensors: To avoid the tuning of the arbitrary
parameters « and/or p in (7), one can replace n‘9§. .1 by a wavelet sensor wﬁ. 4 (Sjogreen &
2

Yee, 2000). With a proper choice of the wavelet basis function, we have a better control
on the proper distribution of numerical dissipations leading to a more accurate simulation
than the ACM sensor. Wavelets were originally developed for feature extraction in image
processing and for data compression. It is well known that the regularity of a function can be
determined from its wavelet coefficients (Daubechies 1992, Mallat & Zhong 1992) far better
than from its Fourier coefficients. By computing wavelet coeflicients (of a suitable wavelet
basis function). we obtain very precise information about the regularity of the function in
question. As of the 1990’s, wavelets are a new class of basis functions that are finding use in
analyzing and interpreting turbulence data from experiments. They also are used for analyzing
the structure of turbulence from numerical data obtained from DNS or large eddy simulation
(LES). See Farge (1992) and her later work, and Perrier et al. (1999). Recently. wavelets have
been used for grid adaptation (Gerritsen & Olsson) and to replace existing basis functions
in constructing more accurate finite element methods. Here we utilize wavelets to adaptively
control the amount of numerical dissipation that is inherent in standard high-resolution shock-
capturing schemes. The resulting wavelet sensors are readily available as more desirable grid
adaptation indicators than the commonly used grid adaptation indicators.

The wavelet sensor of Sjogreen & Yee is obtained by computing the so called “Lipschitz
Exponent” of a chosen vector to be sensed with a suitable multi-resolution non-orthogonal
wavelet basis function that is capable of detecting shocks, shears, spurious oscillations and
turbulence. Here. “vectors or variables to be sensed” means the represented vectors or variables
that are suitable for the extraction of the desired flow physics. The study in Sjogreen & Yee
showed that for a proper choice of the wavelet basis function. the wavelet sensor is physical
problem-independent for all of the test cases considered in Yee et al. (1999a,b). The variables
to be sensed can be the density and/or pressure, the characteristic variables, the a§+§, or
the entropy variables W. There are two types of non-orthogonal wavelet basis functions that
Sjogreen & Yee considered. One is similar to the B-spline wavelet (Mallat & Zhong) used by
Gerritsen & Olsson for grid adaptation and the other is modification of the multi-resolution
method of Harten (1995) as a redundant multi-resolution wavelet. The B-spline wavelet sensor
requires slightly more arithmetic operations than the redundant form of Harten wavelet sensor.
The final form for u +1 involves mainly nested difference operators and least squares fits.

However, the theory xs qmte involved. The reader is referred to Sjogreen and Yee for the exact



8

formula and the references cited for background. It is noted that the dual purpose wavelet
sensors (dynamic numerical dissipation controls and grid adaptation indicators) can be a stand
alone option for a variety of schemes other than what is discussed here.

It is emphasized here that neither ACM nor wavelet sensors will be able to improve the
accuracy at the shock and shear locations over the inherent shock-capturing capability of the
nonlinear dissipation. The accuracy of the shock and shear is dictated by the chosen nonlinear
dissipation. The role of the sensors is to allow the full amount of numerical dissipation in shock
and shear regions, and to limit the amount of numerical dissipation in regions immediately
away from shock and shear locations and the rest of the flow field. Therefore, with a suitable
sensor, one does not have to use CPU-intensive high order high-resolution shock-capturing
numerical dissipation. since this type of dissipation generally gives a slightly more accurate
solution away from discontinuities but exhibits similar shock and shear resolutions as second
or third-order high-resolution numerical dissipations.

Full Discretizations: If a multistage time discretization such as the Runge-Kutta method is
desired, the high order non-dissipative spatial differencing base scheme is applied at every stage
of the Runge-Kutta method. If viscous terms are present, they use the same order and type of
base scheme as for the inviscid terms. There are two methods for applying the characteristic
filter. Method 1 is to apply the filter at every stage of the Runge-Kutta step. Method 2 is
to apply the filter at the end of the full Runge-Kutta step. For inviscid and strong shock
interactions. method 1 might be more stable.

If one desires a time discretization that belongs to the class of linear multistep methods
(LMDMIs), e.g.. trapezoidal rule or three-point backward differentiation, then the filter can be
applied as a numerical dissipation vector in conjunction with the base scheme. The filter in
this case is evaluated at U™ for explicit LMMs. For implicit LMMs additional similar filters
evaluated at the n + 1 time level might be involved. Alternatively, method 2 can be applied to
LMMs as well. In this case. we apply the filter after the completion of the implicit time step.

As an example, we illustrate the complete form of the schemes for Runge-Kutta methods
with the filters applied at the completion of a full Runge-Kutta time step. Let Un*1 be the
solution after one full Runge-Kutta time step using a non-dissipative spatial base scheme. Note
that if entropy splitting is employed, the base scheme is applied to the split form of the inviscid
flux derivatives. Then the solution at the next time level U™*! is

% At | = ~ At [ -
m+1 _ rn+1 _ = * _ - b . _ .
Lj,k —Lj,k " Ax [Fﬁ%,k FJ-§,/¢} + Ay [Gj,k+§ G'j,k_%}. (8)
Here. F’;i.l . and é', r41 are evaluated at U+l
IR J.kxs3

III. Numerical Examples

We summarize the performance of this class of schemes by illustrating four perfect gas test
cases with distinct low properties. The first is inviscid and the last three are compressible full
Navier-Stokes computations. The four test cases are: (1) a 2-D inviscid horizontally convecting
vortex with periodic boundary conditions (BCs), (2) a 2-D vortex pairing in a time-developing
mixing layer with shock waves formed around the vortices, (3) a 2-D shock wave impinging
on a spatially evolving mixing layer where the evolving vortices must pass through a shock
wave. which in turn is deformed by the vortex passage, and (4) a direct numerical simulation
of a 3-D shock-free compressible turbulent plane channel flow. Figures 1-4 show the schematic,
flow conditions. grid size and the computational domains of the four test cases.
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In all of the computations the classical fourth-order Runge-Kutta time discretization, and
the non-compact central spatial interior schemes with the same order of accuracy and type
of base scheme for the inviscid and viscous terms (if viscosities are present) are employed. If
filters are used, they are applied at the end of the full Runge-Kutta time step. Roe’s (1981)
average states are used in (4). along with the Harten and Yee (Yee 1989, Yee et al. 1990)
second-order upwind TVD dissipation portion for (j); +4 in (5). The parameters p and m are

set to 1 and a small value of 107 is added to the denominator of (7) to avoid an extra logical
statement for the ACM sensor. These will be notated as ACM or WAV (depending on whether
ACM or wavelet is used as sensor) with the following numbers indicating the order of the
interior base scheme for the inviscid and viscous terms. For example, ACM66 (WAV66) means
the use of sixth-order central as the base scheme for both the inviscid and viscous terms, and
ACM as sensor (wavelet as sensor). In order not to introduce additional notation, inviscid
flow simulations are designated by the same notation, with the viscous terms not activated.
Computations using entropy splitting are indicated by adding the letters “ENT” at the end
as in ACM66-ENT (WAV66-ENT). Computation using S’ 1= = 1, i.e, the sensor is turned off

and the upwind TVD dissipation portion is used as the ﬁlter will be notated by TVD as in
TVD66. To examine the performance of the entropy splitting schemes where shock waves are
absent. the computations also employ only the non-dissipative central base schemes (without
the filters) designated as CEN66 and CEN66-ENT for sixth order unsplit and split forms of
the inviscid flux derivatives respectively. The fifth-order WENO scheme of Shu (1997) will be
notated as WENOS3.

For the Navier-Stokes computations involving entropy splitting, the splitting is applied to
the inviscid flux terms. and the symmetric form of the viscous flux is not used. Except for the
periodic BCs and the 3-D channel problem, compatible stable boundary schemes of Strand, and
Olsson are not used in order to study the benefit of the entropy splitting without considering
the accompanying stable boundary schemes as a complete package for stability consideration.
For the 3-D channel flow, a variant of the Strand boundary scheme developed by Carpenter
et al. {1998) is emploved. For this problem, we also reformulate the viscous term to minimize
odd and even decoupling phenomena before the application of the central scheme (Sandham
& Yee). For the second and third test cases, we lower the order of the base scheme near the
boundary points for the boundary scheme. For the third test case, for simplicity, slip wall
BC is used for the lower wall, and the upper y-direction physical BC is overspecified and
nonreflecting BC is not used. The various ways of imposing physical and boundary schemes
for the different cases illustrate the robustness of the schemes and are an indication of the
added value of entropy splitting used in conjunction with interior and boundary schemes that
do not satisfv the generalized energy estimate. In order to assess the true performance of
the algorithm. no attempt is made to enhance the resolution using appropriate adaptive grid
procedures.

Figures 3-16 show the following comparisons:

1. Numerical Dissipation Sensor Control vs. No Sensor: Comparisons of TVD66 and ACM66
for test cases 2 and 3 are shown in Figures 5 and 6. For test case 2, the ACM66 using a
41 x 41 grid produces a solution slightly more accurate (around the shear regions) than
TVD66 using a 101 x 101 grid. Note that the widths of the shock resolution of ACM66 and
TVD66 are the same as discussed in Section II (the paragraph before the full discretization
subsection). For the TVD66, ACM66 and WAV66 comparison, results should be compared
with Figures 12 and 13a results.
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Entropy Splitting vs. Unsplit: Comparisons of CEN66 vs. CEN66-ENT, and ACM66
vs. ACM66-ENT for test case 1 are shown in Figures 7-10. The CEN66 diverged shortly
after t = 55 as opposed to over 6 times the integration time longer for CEN66-ENT
with an almost perfect vortex preservation. For even longer time integrations, numerical
dissipation is needed. The amount for ACM66-ENT is less than for ACM66. For all
simulations involving entropy splitting for test case 1, we set the splitting parameter
3 =1 and p* in (3) to be a constant (for isentropic flow). It seems that ACM66-ENT
requires a factor of at least % less numerical dissipation over the ACM66. This factor is
precisely the conservative portion of the entropy splitting of the inviscid flux derivatives.

This factor is, however. greatly reduced if high shear or shock waves are present.

Performance of the 5th-Order WENQ Scheme: We compare WENOS5 with ACM66 for
test cases 3 and 4, and various mixing layer problems, including hypersonic speed. In all
cases. WENQ3 is more diffusive than ACM66. Figure 11 shows their comparison for test
case 3, where the normalized temperature contours (top two) and Mach contours (bottom
two) at t=113.16 on a 320 x 81 grid for WENOS and a 321 x 81 grid for ACM66 are
shown. The vortices are more diffusive in the WENOb5 computations. There is a minor
difference on the two simulations. The WENO5 code has a built-in nonreflecting BC on
the upper y-direction. It is too costly to fully compare the WENOS5 with the 3-D channel
DNS computations where a fully developed turbulence statistics grid refinement study
was illustrated in Sandham & Yee (2000) using CEN44-ENT. For WENOS, a smaller
CFL number is used for stability. We compared the CPU time per time step and accuracy
in a loose sense with CEN44-ENT. We use the solution at t = 150 from the CEN44-ENT
simulation as the starting solution for WENQOS5 and integrate for a time length of 20 and
compare the turbulence statistics with the CEN44-ENT simulation. Our preliminary study
shows that WENOS5 costs a factor of six more CPU time with less accurate turbulence
statistics than CEN44-ENT. See Hadjadj et al. (2001) for details.

ACM sensor vs. Wavelet sensor: Sample computations using WAV66 for test cases 2 and
3 are shown in Figures 12-14. The accuracy of the two wavelet sensors, B-spline wavelet
(WAV66-BS) or the redundant form of Harten wavelet (WAV66-RH) for test cases 1-3
(results not shown) is very similar and the effect on accuracy of the choice of the physical
vector {density and/or pressure, characteristic variables, alj 4100t entropy variables W) to
be sensed is not pronounced. In all cases, no physical problem-dependent parameter has
to be tuned. The accuracy compared very well with that of the corresponding best tuned
k for the individual test cases 1-3. In particular, the same accuracy was sustained, using
WAV66-ENT for either the B-spline or the redundant form of Harten wavelet sensors for
long time integrations of the vortex convection problems. as ACM66-ENT using « = 0.01
and At = 0.01. Figure 12 shows the test case 2 results which should be compared with
the ACMG66 results in Figure 5. Figures 13 and 14 show the test case 3 results. Figure 13a
shows the density and pressure contours computations by WAV66-RH using the density
and pressure as the functions to be sensed (see Figure 6 for comparison with ACM66).
Figure 13b shows the corresponding estimated Lipschitz exponent (alpha) for the density
and pressure at t=120 and the wavelet sensor itself. Figure 14a shows the wavelet sensor
applied to the density and pressure in the r and y-directions, and the square root of the
sum of these quantities in the r and y-directions. Figure 14b shows the corresponding
contours using the ACM sensor. The wavelet sensor was able to extract the full feature
of the flow structure far better than the ACM sensor. See Sjogreen and Yee for the exact
formula and detailed numerical experiments.
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Fourth-Order Central Differencing with Entropy Splitting vs. Spectral Method: A grid
refinement study of a compressible turbulent DNS and a comparison of CEN44-ENT
with the incompressible simulation using a spectral method for test case 4 are shown in
Figures 15 and 16. For the physical problems, background and grid refinement study,
see Sandham & Yee for details. These computations require very long time integrations
of the full Navier-Stokes equations before fully developed turbulence statistics can be
obtained. A very accurate data base is available for the 3-D DNS incompressible turbulence
simulations. For comparison, we use a Mach number of 0.1 and a Reynolds number of 180.
Very accurate fully developed turbulence statistics were obtained using coarse to moderate
grid sizes and without filters. The results compared well with the best spectral method of
incompressible Navier-Stokes flow formulations which may use de-aliasing, skew-symmetric
formulation or energy conservation (e.g., variables on a staggered grid) to obtain a robust
method. The angle brackets < > denote averages over the homogeneous spatial directions
and time while double primes denote deviation from mass-weighted (Favre) averages.

Concluding Remarks

In addition to the systematic theoretical development of simple parallelizable nonlinear stable
schemes for IBVPs. their extension and their abilities to accurately simulate a wide range of
physical applications for the Euler and Navier-Stokes equations, there are two key items that
might have potential impact on a wide range of complex practical computations. One is the
possible applicability of entropy splitting beyond the boundary of the theory indicated and the
other is the wavelet sensors.

The numerical results indicate that entropy splitting alone can improve nonlinear stability
even when one employs boundary schemes that do not satisfy the discrete generalized energy
estimate. This stability property is valuable not just to the class of schemes in question,
but might also be applicable to other schemes commonly used in practical CFD applications.
This finding actually is not surprising since one should, if possible, condition the governing
equations before the application of a suitable numerical method that can handle the type of
physics inherent in the physical model.

The proposed wavelet sensors. unlike the ACM sensor, can detect most of the distinct flow
features, including turbulence, leading to an automatic selection of the appropriate distribution
of numerical dissipation. In addition. these wavelet sensors are free of physical problem-
dependent parameters for the three test cases, and they are also good grid adaptation indicators
(Gerritsen & Olsson) when compared to the ones commonly used in practice. Consequently, a
new dual purpose adaptive method is readily available leading to dynamic numerical dissipation
controls and improved grid adaptation indicators. This dual purpose adaptive method can
also serve as a stand alone option for other numerical schemes. These are subjects of ongoing
research.
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Tables Captions

Table 1. Flow Chart of the efficient low dissipative high order schemes.
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Vortex pairing: Comparison of ACM66 with TVD66 (NG; 43 = 1) with reference

solution ACM-44 (201 x 201 grid), illustrated by the normalized temperature contours
at time t = 160 on 101 x 101 and 41 x 41 grids with x = 0.7 for the nonlinear fields
and x = 0.35 for the linear fields.

Shock-shear layer interaction: Comparison of ACM66 with TVD66 (llcl9j.+l = 1) with
2

reference solution ACM44 (641 x 161 grid), illustrated by the density contours at
t = 120 on a 321 x 81 grid with xk = 0.35 for the nonlinear fields and x = 0.175 for the
linear fields.

Convecting Vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated
by density contours at t = 20, 30,40, 50,55 for At = 0.01 on a 80 x 79 grid.

Convecting Vortex: Comparison of CEN66-ENT with the exact solution (I.C.). illus-
trated by density contours at ¢ = 100, 200, 300, 400, 500 for At = 0.01 on a 80 x 79
grid.

Convecting Vortex: Comparison of ACM66 with the exact solution (I.C.), illustrated
by density contours at ¢ = 100,200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 for
At =0.04 and kK = 0.04 on a 80 x 79 grid.

Convecting Vortex: Comparison of ACM66-ENT with the exact solution (I.C.). illus-
trated by density contours at ¢ = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100
for At =0.01 and ~ = 0.01 on a 80 x 79 grid.

Shock-shear layer interaction: Comparison of ACM66 with WENOS, illustrated by
the normalized temperature contours (top two plots) and Mach contours (bottom two
plots) at ¢ = 113.16 on a 321 x 81 grid for ACM66 with x = 0.35 for the nonlinear
fields and & = 0.175 for the linear fields, and a 320 x 81 for the WENOS.

. Vortex pairing: WAV66-RH computations, illustrated by the density and normalized

temperature contours at time ¢ = 160 on a 101 x 101 grid using the density and
pressure as functions to be sensed.

Shock-shear layer interaction: WAV66-RH computations illustrated by (a) density
and pressure contours (top 2 plots). and (b) estimated Lipschitz exponent « and the
wavelet sensor itself (bottom 2 plots) using the density and pressure as functions to
be sensed at t = 120 on a 321 x 81 grid.

Shock-shear layer interaction: Comparison of ACM66 with WAV66 at ¢ = 120 on a
321 x 81 grid with x = 0.35 for the nonlinear fields and x = 0.175 for the linear fields
for ACMG66. illustrated by (a) contours of the sensor used by WAV66-RH applied to
the density and pressure in the z and y-directions, and the square root of the sum
of these quantity (top 3 plots), and (b) the corresponding contours using the ACM
sensor (bottom 3 plots).

. 3-D channel: Effect of grid refinement of a compressible turbulent DNS on (a) root
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mean square of 4, v and w and (b) Reynolds stress and total stress, using CEN44-ENT
and Carpenter et al. boundary scheme.

3-D channel: Comparison of root mean square of u, v, and w on a 30 x 30 x 101 grid
of a compressible turbulent DNS using CEN44-ENT and Carpenter et al. boundary
scheme with an incompressible turbulent DNS result on a 32 x 32 x 81 grid using
spectral method.
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Table 1. Flow Chart of the efficient low dissipative high order schemes.
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Vortex Pairing in a Time-Developing Mixing Layer
(M=0.8, Re=1000, Tr=300K, Prandtl #=0.72)
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Shock Impingement on a Spatially-Developing Mixing Layer
(M.=0.6, Re=500, TR=300K, Prandtl #=0.72, oblique shock angle = 12°)
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Fig. 3



DNS of 3-D Compressible Turbulent Channel Flow
(M = 0.1, Re = 180, Constant pressure gradient approach)

Coleman, Kim & Moser (1395): Unifonnopody force to drive the flow
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Vortex Pairing at M, = 0.8
Temperature Contours at 1=160

, ACM66 TVD66 ACME6
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Fig. 5. Vortex pairing: Comparison of ACM66 with TVD66 (nB;. +3 = 1) with reference
2

solution ACM44 (201 x 201 grid), illustrated by the normalized temperature contours
at time ¢ = 160 on 101 x 101 and 41 x 41 grids with k = 0.7 for the nonlinear fields
and x = 0.35 for the linear fields.

Shock Impingement on Mixing Layer
Density Contours at t=120

Reference Solution, 641X161 _
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Fig. 6. Shock-shear layer interaction: Comparison of ACM66 with TVD66 (nﬂj i} = 1) with

reference solution ACM44 (641 x 161 grid), illustrated by the density contours at
t =120 on a 321 x 81 grid with x = 0.35 for the nonlinear fields and x = 0.175 for the
linear fields.



Density Contours (0.47 -1.04, 0.03 inc)
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Fig. 7. Convecting Vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated
by density contours at ¢ = 20, 30,40, 50, 55 for At = 0.01 on a 80 x 79 grid.

Density Contours (0.47 - 1.04, 0.03 inc)
CENG6-ENT, dt=0.01

Fig. 8. Convecting Vortex: Comparison of CEN66-ENT with the exact solution (I.C.), illus-

trated by density contours at ¢ = 100, 200, 300, 400, 500 for At = 0.01 on a 80 x 79
grid.
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Fig. 9. Convecting Vortex: Comparison of ACM66 with the exact solution (I.C.), illustrated
by density contours at ¢t = 100,200,300, 400,500, 600,700,800,900,1000,1100 for

At = 0.04 and x = 0.04 on a 80 x 79 grid.



Density Contours (0.47 - 1.04, 0.03 inc)
ACM66-ENT, k=0.01, dt=0.01

Fig. 10. Convecting Vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illus-

trated by density contours at ¢t = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100
for At =0.01 and x = 0.01 on a 80 x 79 grid.
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Vortex Pairing at M, = 0.8
WAV66-RH, t=160, 101 x 101 grid

Temparature
—

Density

[¢] 10 20 30

Fig. 12. Vortex pairing: WAV66-RH computations, illustrated by the density and normalized
temperature contours at time ¢ = 160 on a 101 x 101 grid using the density and
pressure as functions to be sensed.



Shock Impingement on Mixing Layer
WAV66-RH, t = 120, 321 x 81 grid

Sensor, contour at 0.5
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Fig. 13. Shock-shear layer interaction: WAV66-RH computations illustrated by (a) density
and pressure contours, and (b) estimated Lipschitz exponent « and the wavelet sensor
itself using the density and pressure as functions to be sensed at ¢ = 120 on a 321 x 81

grid.



Shock Impingement on Mixing Layer
WAV66-RH, t=120, 321 x 81 grid

_ Density/pressure based WAV66-RH x-sensor
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Fig. 14. Shock-shear layer interaction: Comparison of ACM66 with WAV66 at ¢t = 120 on a
321 x 81 grid with xk = 0.35 for the nonlinear fields and x = 0.175 for the linear fields
for ACM66, illustrated by (a) contours of the sensor used by WAV66-RH applied to
the density and pressure in the z and y-directions, and the square root of the sum of
these quantity, and (b) the corresponding contours using the ACM sensor.
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Fig. 15. 3-D channel: Effect of grid refinement of a compressible turbulent DNS on (a) root
mean square of u, v and w and (b) Reynolds stress and total stress, using CEN44-ENT

and Carpenter et al. boundary scheme.
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Fig. 16. 3-D channel: Comparison of root mean square of u, v, and w on a 30 x 30 x 101 grid
of a compressible turbulent DNS using CEN44-ENT and Carpenter et al. boundary
scheme with an incompressible turbulent DNS result on a 32 x 32 x 81 grid using

spectral method.



